Search results for "asymmetric inheritance"
showing 2 items of 2 documents
Inbreeding removes sex differences in lifespan in a population of Drosophila melanogaster
2016
Sex differences in ageing rates and lifespan are common in nature, and an enduring puzzle for evolutionary biology. One possibility is that sex-specific mortality rates may result from recessive deleterious alleles in ‘unguarded’ heterogametic X or Z sex chromosomes (the unguarded X hypothesis). Empirical evidence for this is, however, limited. Here, we test a fundamental prediction of the unguarded X hypothesis in Drosophila melanogaster, namely that inbreeding shortens lifespan more in females (the homogametic sex in Drosophila) than in males. To test for additional sex-specific social effects, we studied the lifespan of males and females kept in isolation, in related same-sex groups, and…
Data from: The "unguarded-X" and the genetic architecture of lifespan: Inbreeding results in a potentially maladaptive sex-specific reduction of fema…
2018
Sex differences in ageing and lifespan are ubiquitous in nature. The "unguarded-X” hypothesis (UXh) suggests they may be partly due to the expression of recessive mutations in the hemizygous sex chromosomes of the heterogametic sex, which could help explain sex-specific ageing in a broad array of taxa. A prediction central to the UX hypothesis is that inbreeding will decrease the lifespan of the homogametic sex more than the heterogametic sex, because only in the former does inbreeding increase the expression of recessive deleterious mutations. In this study, we test this prediction by examining the effects of inbreeding on the lifespan and fitness of male and female Drosophila melanogaster…